

Electrons, phonons and screening

Matthieu J Verstraete, ULiege Belgium

Exciting NEWS 2021 HUBerlin July 2020 Riga June 2021 on Zoom June 23rd 2021

First principles quantum simulations

$\mathcal{H}\Psi=E\Psi$

Calculate:

- Structure
- Bonding
- Magnetism
- Thermodynamics
- Kinetics
- Superconductivity
- Transport

Battery anodes Kim J. ECS 158 A309 (2011)

Intel HfO2 dielectric

Earth's core Gomi Verstraete et al. PEPI 224 88 (2013)

DPFT refresher

Start from DFT what moves?

- direct
- induced (SCF)
- Pulay/basis set

 $H_{k}^{(0)} \left| \psi_{ik}^{(0)} \right\rangle = \varepsilon_{ik}^{(0)} \left| \psi_{ik}^{(0)} \right\rangle$ $H^{(0)} = T + V_{loc+NL}(R) + V_{Hxc}[n(R)]$ \uparrow $H_{k}^{\alpha} \left| \psi_{ik}^{\alpha} \right\rangle = \varepsilon_{ik}^{\alpha} \left| \psi_{ik}^{\alpha} \right\rangle$

Pertrub 1st order

+ choose gauge

 $\begin{pmatrix} H_k^{(0)} - \varepsilon_{ik}^{(0)} \end{pmatrix} \left| \psi_{ik}^{\alpha} \right\rangle = - \begin{pmatrix} H_k^{\alpha} - \varepsilon_k^{(\alpha)} \end{pmatrix} \left| \psi_{ik}^{(0)} \right\rangle$ $\begin{pmatrix} \psi_j^{(0)} \mid \psi_i^{\alpha} \end{pmatrix} = 0 \quad \forall j$

See lecture on phonons by Fabio Caruso: <u>https://www2.physik.hu-berlin.de/how-exciting/talk-fabio-caruso.mp4</u>

EPC refresher

Sternheimer:

- variational SCF
- project on unoccupied states

$$P_{ck}\left(H_{k}^{(0)}-\varepsilon_{ik}^{(0)}\right)P_{ck}\left|\psi_{ik}^{\alpha}\right\rangle=-P_{ck}H_{k}^{\alpha}\left|\psi_{ik}^{(0)}\right\rangle$$

Advantages:

- "easier" than Kohn Sham
- also q dependent (any q!)
- extract coupling:

$$g_{kij}^{\alpha q} = \left\langle \psi_{ik+q}^{(0)} \middle| H_k^{\alpha q} \middle| \psi_{jk}^{(0)} \right\rangle$$

See the lecture on EPC by Sebastian Tillack: <u>https://www2.physik.hu-berlin.de/how-exciting/talk-sebastian-tillack.mp4</u>

Now what does it do?

Electron energy renormalization (AHC, polarons)

Electron pairing (superconductivity)

Electron scattering (resistance, Seebeck)

Transport, thermoelectricity

Spectroscopy

0.005

Transport

Defects

High Throughput Polarons

Polaron overview

What is a polaron anyway?

Signatures in optics, transport, superconductivity...

• How common are different types?

• How far can we get with simple models?

See previous lecture on polarons and ARPES by Carla Verdi!

Fröhlich model

1 electron 1 polar phonon Long range electrostatic coupling Single free parameter α Binding energy $E_P \simeq -\alpha \omega_{LO}$ aka Zero Point Renormalization (ZPR) Perturbation theory catastrophe at α =6

Fröhlich Adv. Phys. (1954) Mishchenko PRB (2000) **Story PRB (2014)** Sjakste PRB (2015) Verdi PRL (2015)

$$\alpha = \left(\frac{1}{\varepsilon^{\infty}} - \frac{1}{\varepsilon^{0}}\right) \sqrt{\frac{m^{*}}{2\omega_{LO}}} \qquad \frac{m_{\rm P}^{*}}{m^{*}} \approx \left(1 - \frac{\alpha}{6}\right)^{-1}$$

Methods

Descriptors: $m^* \epsilon^{\infty} \epsilon^0 \omega_0$

Materials Project databases:

- Intersection of > 1039 materials:
- 9000 m* : F. Ricci Sci Data (2017)
- 1500 phonons: G. Petretto Sci Data (2018)

Criteria:

- ICSD stable 3D, nonmagnetic, insulators
- 2-5 elements per unit cell

Conduction band minimum (also valence)

Distribution of alpha and ZPR

Electron effects

Phonon effects

Beyond Fröhlich - Generalization

Degenerate bands

All phonon modes

Directional m*

Directional variation of ε and ω

$$\alpha_j = \int d\hat{q} \frac{\langle (m_n^*(\hat{q}))^{1/2} \rangle_n}{\epsilon_j^*(\hat{q}) \sqrt{2\omega_j(\hat{q})}}$$

A. Miglio npj Comp Mater (2020)

Why does Frohlich work so well?

Beyond Fröhlich - validation

How far off are the Fröhlich models? Which modes contribute? Calculate ZPR with AHC theory DFPT Phonons, m* Nery PRB (2018)

KN₃: large ZPR small alpha

Cs₂NaScF₆: large ZPR large alpha

Beyond Fröhlich - validation

Polaron takeaway

High throughput Fröhlich

- Clustering by element period/ionicity
- Monotonic electron contribution
- Competing constraints in $\varepsilon_0 \ \omega_{LO} \ \varepsilon_\infty \ m^{\,*}$
- Valid predictor for order of magnitude

Comparison with full DFPT + AHC theory:

- Many phonons intervene
- Highest LO does not dominate
- Fröhlich ZPR 30-50% overestimation

Dielectric nano-engineering

2D Electronics

Goal: maximize electron mobility Also for opto- or spintronics Issues for 3D materials @ nanoscale: leakage, heat, fabrication, cost

What changes in 2D?

- + low mass
- + low operational voltage
- + easy assembly
- +/- environment sensitive

Find optimal material (combination)

3D Si FinFET Samsung (2020)

2D graphene Chen IBM (2008)

Filter the interesting candidates

100 000 3D parents

2000 easily exfoliable

250 small unit cells

12 mobility calculation

Mounet Nat. Nano 13 246 (2018) Sohier 2D Mater. 8 015025 (2020)

Competitive with Silicon Good mobility only at high doping **High mobility without doping?** Let's look at GaSe

Mobility limited by phonon scattering Polar mode coupling strongest (Fröhlich) 2D screening geometrical factor 1/|q|

$$\mathbf{D}(\mathbf{q}) = \frac{e^2}{\Omega} \sum_{a} \mathbf{Z}_a \cdot \mathbf{u}_{\mathrm{LO}}^a(\mathbf{q}) \qquad \qquad W_c(\mathbf{q}) = \begin{cases} \frac{4\pi}{|\mathbf{q}|^2 \epsilon} & (3\mathsf{D}) \\ \frac{2\pi}{|\mathbf{q}| \epsilon} & (2\mathsf{D}) \end{cases}$$

 ε also depends on phonon wavevector q Free carriers \rightarrow Drude $\varepsilon \rightarrow$ kill EPC

But now it's metallic w/ large voltages

Real device will be encapsulated

Coupling screened remotely with BN (a bit)

GaSe

0.10

0.15

 $|\mathbf{q}| (\mathring{A}^{-1})$

GaSe/BN, from GaSe GaSe/BN, from BN

0.20

0.25

Engineering GaSe

Real device will be encapsulated

Coupling screened remotely with BN (a bit)

Idea: screen remotely with graphene / BN

High mobility also at low doping

→ New model for heterostructure response

Sohier Gibertini Verstraete PRMater 5 024004 (2021)

Coupled heterostructure equations

$$\delta n^{k}(q,z) = \int \chi^{k}(q,z,z') \left[V_{\text{ext}}(q,z') + \sum_{m \neq k} v_{\text{ind}}^{m}(q,z') \right] dz'$$

Const / linear perturbation:

$$\chi(q, z, z') = Q(q)f(q, z - z_0)f(q, z' - z_0)$$

+ P(q)g(q, z - z_0)g(q, z' - z_0)

Full pipeline:

- 1) reference system EPC
- 2) re-screen Fröhlich interaction in layer
- 3) BTE mobility with full band structure

Sohier Gibertini Verstraete PRMater 5 024004 (2021)

2D transport takeaway

Full stack dielectric model Any layers any doping Remote screening concept quantified

Ongoing work

other phonons: piezo, acoustic

multi valley screening and transport

Sohier Physical Review X (2019) Sohier Melo Zanolli Verstraete in preparation

Acknowledgements

UCLouvain

Universiteit Utrecht

High throughput Fröhlich Clustering by element period/ionicity Competing constraints in $\varepsilon_0 \omega_{LO} \varepsilon_{\infty} m^*$ Valid predictor for order of magnitude Highest LO does not dominate

2D dielectric engineering Full stack dielectric model Screen Frohlich w/ remote graphene Re-calculate EPC and transport

