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First principles quantum simulations

 2

ℋΨ = EΨ

Calculate: 
- Structure 
- Bonding 
- Magnetism 
- Thermodynamics
- Kinetics
- Superconductivity
- Transport
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GPa). After comparing a series of ratios, it is considered that
the Tc of H3O0.5S0.5 is further improved compared to H3S
when the system satisfies the dynamic stability. However,
Ge et al. [68] suggested that the addition of the chalco-
gen element reduced the electron density of the system and
reduced the covalent metal properties of the system and
therefore did not improve the Tc value. At the same time,
they found that Tc increases with the increase of phosphorus
concentration and the Tc value decreases when the doping
ratio is around 10%. Further studies show that the Tc value
of H3S0.925P0.075 at 250 GPa can be as high as 280 K and
the Tc value of H3S0.96Si0.04 at 250 GPa was 274 K. It
is obviously that by investigating the interactions between
doped and host atoms, electronic band structure, phonon
vibration frequency, the electron–phonon interaction of the
newly doped systems and the effect of light elements dop-
ing in superconducting H3S at high pressure, one may find
an efficient way to improve the superconducting transition
temperature or reduce the synthetized pressure of H3S.

Combining experiments and ab initio calculations [44,
69], researchers proposed many other sulfur hydrides for
low-Tc phase, such as HS2, H2S3, H3S2, H3S5, H4S3, H5S8,
H5S2 and the Magn éli phases. The estimated values of Tc
for H2S [39] and H5S2 [70] are in good agreement with
experimental data obtained below 180 GPa. At the same
time, multiple H2S decomposition and H3Sgenerated paths
were pointed out, for example 3H2S → 2H3S + S [40],
8H2S → S + 4H3S + H4S3 [69], 2H2S + H2 → 2H3S
[21] and so on. In order to clarify the decomposition of H2S,
further experimental and theoretical studies of H2S at high
pressure are still greatly demanded.

5 Superconductivity in LanthanumHydrides

Recently, novel H-rich clathrate structures have been
theoretically predicted with high Tc values, YH6 (264 K
at 120 GPa) [71], ScH9 (nearly 200 K at 400 GPa) [72,
73], and LaH10 (286 K at 210 GPa) [72, 74]. The crystal
structures and clathrate cages are shown in Fig. 4. For YH6,
it crystallizes the cubic Im-3m structure, in which six H
squares and eight H hexagons form to the H cage and Y
atom at the cage center (Fig. 4a). ScH9 adopts a hexagonal
structure with the space group P 63/mmc, in which H cage
consists of six irregular squares, six pentagons, and six
hexagons (Fig. 4b).

In May 2017, Liu et al. [74] theoretically predicted, using
the CALYPSO code, that LaH3−5, LaH8, and LaH10 were
stable at 150 GPa. LaH8 was comprised of an extended
hydrogenic lattice (space group C2/m) with the H–H
distance of 1.02 Å at 300 GPa. The calculated electron-
coupling parameter (λ) and superconducting transition
temperature (Tc) reached 1.12 K and 114–131 K with
µ* = 0.1–0.13, respectively. LaH10 shared a sodalite-like
structure with the space group Fm-3m (isotypic to the YH10
phase), wherein six H squares and 12 H hexagons form to
the H cage (Fig. 4c). The computed EPC was approximately
3.41, and the estimated Tc from the Eliashberg equations
was 274–286 K at 210 GPa. Furthermore, the calculated
results showed that the values of λ and Tc decreased with
increasing pressure. In September 2017, Peng et al. [72]
produced a large work on rare earth hydride RE-H system
(RE = Sc, Y, La, Ce, Pr, etc.) by means of CALYPSO and
AIRSS codes. They studied the stability of LaHn (n= 2–12)

Fig. 4 Clathrate structures of a
YH6, b ScH9, and c LaH10
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structure. In the hexagonal form, the migration barrier is 529 meV
for the delithiated structure and 723 meV for the lithiated structure.
In the monoclinic structure, the barriers are significantly lower with
migration energies of 395 meV in the delithiated state and 509 meV
in the lithiated state.

Figure 4 shows the XRD patterns of LiMnBO3 synthesized by a
conventional solid state method. A homogeneous monoclinic
LiMnBO3 was formed when fired at 500°C, and the hexagonal

phase was obtained when fired at 800°C. Both the monoclinic and
hexagonal phases coexisted if fired at 600°C. Our finding that the
monoclinic phase is the low temperature phase and the hexagonal

Figure 2. !Color online" Calculated formation energies for intermediate
states of lithiation for the !a" monoclinic and !b" hexagonal LiMnBO3, and
!c" the corresponding voltage profiles of both the monoclinic and hexagonal
LiMnBO3.

Figure 3. !Color online" Schematic diagrams of the calculated diffusion
pathways for the !a" hexagonal and !b" monoclinic LiMnBO3. Blue polyhe-
dra contain Mn, yellow triangles are BO3 groups, and the yellow contours
are an isoenergy surface for Li representing the possible diffusion pathway.

Figure 4. !Color online" XRD patterns of LiMnBO3 samples fired at !a"
500°C and !b" 800°C for 10 h in an argon atmosphere.
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Bader approach, as the net contribution to the BPDC is
zero due to symmetry for that Bader volume. While it is
not important in TiS2 (most contribution to the dynam-
ical charge comes from the chalcogen Bader volumes),
it is, on the contrary, a large contribution in the case
of MoS2 referring to Fig. S7. As discussed by Ghosez
and Gonze [11], while the BPDC would be able to de-
scribe charge localization/delocalization phenomena, it
would fail to take into account any kind of local change
in polarization. By the present analysis, we show that
the sign of the BEC in MoS2 is primarily due to this
local change in polarization, while it plays little role in
TiS2, for which the BPDC gives excellent agreement with
the BEC. Quantifying such local polarization changes in
MoS2 requires the analysis of the electronic states close
to the band gap. While the other electronic states are
delocalized along the bonds, the last occupied band is
an anti-bonding state, with electrons localized close to
the Mo atoms, which explains the origin of the localized
change of polarization.

ANALYSIS OF THE BAND-BY-BAND
DECOMPOSITION OF THE BECS

The band-by-band decompositions of the BEC [18]
in monolayer MoS2 and bulk TiS2 are shown in Ta-
ble S2. The calculated BEC contributions of each band
are clearly anomalous and show a large variation as a
function of band index. When one sum ups over the
bands for each charge (the quantity in the last row) one
finds that the charge neutrality sum rule is fulfilled.

As mentioned in the main text, an evaluation of the
band-by-band decomposition of the BEC and the local-
ization tensor, which we do not show, is not helpful in
deducing which bands, are specifically responsible for the
anomalous net sign change.

EXPERIMENTAL CONFIRMATION

Finally, we propose in the main text that one can ex-
perimentally verify the sign of the BEC by measuring
the angle-resolved Raman spectrum of the longitudinal
optical mode as done in the work of Wolverson et al [19].
Here they state that the intensity of the Raman signal is
related to the Raman tensor R whose components can be
shown to be linearly related to the BEC of the material.
To demonstrate this correspondence, we will first note
that the intensity of the Raman signal, projected onto
the plane of the sample and as a function of angle, ✓, can
be written as [19]

I(✓) / u2 cos2 ✓+w2 sin2 ✓+ v2 +2v(u+w) sin ✓ cos ✓ (S13)

and that the maximum and minimum values of the in-
tensity are found at angles given when the first derivative

0

60120
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FIG. S8. (Color Online) Our calculated angle dependent Ra-
man susceptibility, in black, using Eq. (S13) with experimen-
tal data points, blue x’s, from Wolverson et al. [19]. The red
line corresponds to the same calculation as the black curve,
except we assumed that the sign of the BEC corresponds to
the nominal charges in ReSe2.

of I is equal to zero. The result of this calculation gives
the angle for the maximum and minimum values as:

tan(2✓) =
2v

u� w
(S14)

where, as we show below, u, v, and w are linearly depen-
dent on the BEC.
From Veithen et al. [20] the Raman intensity, as a func-

tion of the scattering polarization, es (with scattering
angle ✓), is a sum over initial polarizations, ei, of the
form

I(✓) / |es ·Rm · ei|2 / |es · ↵m · ei|2 (S15)

which gives us the connection between the matrix ele-
ments of the Raman matrix R and the matrix elements
of the Raman susceptibility ↵. Namely, u = ↵11, v = ↵12

and w = ↵22.
The Raman susceptibility tensor, ↵, is defined as [20]

↵m
ij =

p
V0

X

�

@�(1)
ij

@⌧�
Um(�) (S16)

which, for longitudinal optical phonons [20], is propor-
tional to the BEC and can be written as:

↵m
ij / Xij �

X

l

Z⇤
mlql ⇥

P
l �

(2)
ijl qlP

l.l0 ql✏l,l0ql0
(S17)

where Z⇤
ml =

P
� Um(�)Z⇤

�l is a mode dipole vector, ✏
is the dielectric tensor, ql is the phonon unit vector in the

lth direction, and Xij =
P

�

@�(1)
ij

@⌧�

����
E0=0

is the derivative

of the component of the linear dielectric susceptibility.

Flipped sign for
Born Effective Charge

Signature in  
Polarized Raman
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EPC refresher
Sternheimer: 
• variational SCF 
• project on unoccupied states
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See the lecture on EPC by Sebastian Tillack: 
https://www2.physik.hu-berlin.de/how-exciting/talk-sebastian-tillack.mp4 

Advantages: 
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• also q dependent (any q!) 
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Now what does it do?
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Poncé J Chem Phys 143 102813 (2015)

The coupling strength λ is related to the mass enhancement
parameter λnk discussed in Sec. VIII.A. The main difference
between λ and λnk is that the former represents an average over
the Fermi surface, while the latter refers to the Fermi velocity
renormalization of a specific electron band. While these
quantities are related, they do not coincide and hence cannot
be used interchangeably.
Equations (204)–(207) involve a number of approxima-

tions. For example, it is assumed that the superconductor
is isotropic and exhibits a single superconducting gap.
Furthermore, almost invariably the effective Coulomb poten-
tial μ! is treated as an adjustable parameter on the grounds
that it should be in the range μ! ¼ 0.1–0.2. This procedure
introduces a large uncertainty in the determination of Tc,
especially at moderate coupling strengths.

B. Anisotropic Migdal-Eliashberg theory

A first-principles approach to the calculation of the super-
conducting critical temperature is provided by the anisotropic
Migdal-Eliashberg theory (Migdal, 1958; Eliashberg, 1960).
This is a field-theoretic approach to the superconducting
pairing, formulated in the language of finite-temperature
Green’s functions. At variance with the Hedin-Baym equa-
tions of Table I, the Migdal-Eliashberg theory is best devel-
oped within the Nambu-Gor’kov formalism (Gor’kov, 1958;
Nambu, 1960), which enables describing the propagation of
electron quasiparticles and of superconducting Cooper pairs
on the same footing (Scalapino, 1969; Schrieffer, 1983). A
comprehensive presentation of the Migdal-Eliashberg theory
is provided by Allen and Mitrovic (1982). Their article served
as the starting point of current first-principles implementations
of the theory.
In the Migdal-Eliashberg theory, one solves the following

two coupled equations:

ZnkðiωjÞ ¼ 1þ πkBT
NF

X

n0k0j0

ωj0=ωjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

j0 þ Δ2
n0k0ðiωj0Þ

q

× λnk;n0k0ðiωj − iωj0Þδðεn0k0 − εFÞ; ð208Þ

ZnkðiωjÞΔnkðiωjÞ ¼
πkBT
NF

X

n0k0j0

Δn0k0ðiωj0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

j0 þ Δ2
n0k0ðiωj0Þ

q

×½λnk;n0k0ðiωj − iωj0Þ − NFVnk;n0k0'
× δðεn0k0 − εFÞ; ð209Þ

where
P

k0 stands for Ω−1
BZ

R
dk0. In these equations, T is

the absolute temperature, and ZnkðiωjÞ is the quasiparticle
renormalization function and is analogous to Znk in Eq. (189).
ΔnkðiωjÞ is the superconducting gap function. The functions
ZnkðiωjÞ and ΔnkðiωjÞ are determined along the imaginary
frequency axis at the fermion Matsubara frequencies iωj ¼
ið2jþ 1ÞπkBT=ℏ with j an integer. The anisotropic and
frequency-dependent generalization of Eq. (206) to be used
in the Migdal-Eliashberg equations is

λnk;n0k0ðiωÞ ¼ NF

ℏ

X

ν

2ωqν

ω2
qν þ ω2

jgnn0νðk;qÞj2; ð210Þ

with q ¼ k0 − k. Equations (208) and (209) are to be solved
self-consistently for each temperature T. The superconducting
critical temperature is then obtained as the highest temperature
for which a nontrivial solution is obtained, that is, a solution
with ΔnkðiωjÞ ≠ 0. From the superconducting gap along the
imaginary axis it is then possible to obtain the gap at real
frequencies by analytic continuation (Marsiglio, Schossmann,
and Carbotte, 1988), and from there one can compute various
thermodynamic functions.
The first ab initio implementation of the anisotropic

Migdal-Eliashberg theory was reported by Choi et al.
(2002a, 2002b) and Choi, Cohen, and Louie (2003) in a
study of the superconducting properties of MgB2. They
succeeded in explaining the anomalous heat capacity of
MgB2 in terms of two distinct superconducting gaps and
obtained a Tc in good agreement with experiment. These
calculations were later extended to MgB2 under pressure
(Choi, Louie, and Cohen, 2009a) and other hypothetical
borides (Choi, Louie, and Cohen, 2009b). Margine and
Giustino (2013) demonstrated an implementation of the
Migdal-Eliashberg theory based on the Wannier interpolation
scheme of Sec. VI and reported applications to Pb and MgB2.
The superconducting gap and superconducting density of
states of MgB2 calculated by Margine and Giustino are shown
in Fig. 17. In all these calculations, the Coulomb repulsion

FIG. 17. (a) Energy distribution of the superconducting gap
function of MgB2 as a function of temperature, calculated using
the anisotropic Migdal-Eliashberg theory. The gap vanishes at the
critical temperature (in this calculation Tc ¼ 50 K). Two distinct
superconducting gaps can be seen at each temperature. (b) Den-
sity of electronic states in the superconducting state of MgB2 at
various temperatures calculated within the Migdal-Eliashberg
theory. From Margine and Giustino, 2013.

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-48

Margine Phys. Rev. B 87 024505 (2013)

Electron pairing 
(superconductivity)

Electron scattering 
(resistance, Seebeck)
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FIG. 3. Calculated Fermi surfaces of Li, Na, K, Cu, Ag, Au, and Pt.

at very low temperature (below 50 K), and the measurements270

are highly nonlinear at higher temperature. Both departures271

from the Bloch-Grüneisen behavior are probably linked to272

the pre-liquid phase just below the very low melting temper-273

atures: Stronger fluctuations of density and structure create274

an additional internal resistivity—the study of the electrical275

resistance in a unified Boltzmann type formalism across the276

melting point would be a very interesting topic for future re-277

search. For the noble metals, excellent agreement is obtained278

between calculations and experiments [47– 49], for both low279

and high temperatures, even for Pt with a complex Fermi280

surface. It is interesting to point out that the transport EPC281

constants reflect the relative magnitudes of ρ in these metals.282

Finally, the temperature dependence of the Seebeck coef-283

ficients S are computed with both CRTA and VA approaches284

and compared with experimental data [47– 62], as shown in285

Fig. 5. It is worth noting that S in metals is a more delicate286

quantity than ρ, due to the cancellation effect from, respec-287

tively, the electronlike and holelike charge carriers above and288

below the Fermi energy [Eqs. (A4) and (A14) in Appendix A].289

For the studied alkali metals, Li is the only one that exhibits an290

abnormal positive sign of S. The variational prediction yields291

not only the correct sign but also a quantitative agreement292

with experiments. On the contrary, CRTA predicts a negative293

S, implying that the constant relaxation time fails even in a294

simple monovalent metal such as Li. As it was explained in 295

Ref. [24], the positive S in Li can be attributed to the peak 296

in the DOS near the Fermi energy due to band bending near 297

the edge of the BZ. This leads to a higher scattering rate 298

for electrons above the ϵF than holes below the ϵF . For Na 299

and K, both methods predict the correct negative sign of S; 300

however, the quantitative agreement is excellent for VA, while 301

CRTA largely underestimates the magnitude. Even for metals 302

with normal sign of S, VA is a much more accurate method 303

(though certainly heavier numerically) compared with CRTA. 304

The melting transition appears as a jump (Li) or a kink (Na) 305

of the experimental Seebeck coefficient, as opposed to the 306

divergence in ρ. 307

Cu, Ag, and Au are three noble metals that have positive 308

Seebeck coefficients. Again, CRTA predicts wrong signs here, 309

i.e., negative S. For VA, excellent agreement is achieved in 310

Cu at all temperatures. In Ag, there is slight underestimation 311

when compared with the data of Ref. [57] (LB [58Cu]), and 312

moderate underestimation when compared with the data of 313

Ref. [58] (LB [56Ru]). The small “hump” at very low tem- 314

perature from the Ref. [60] (LB [65Sc]) experimental data is 315

probably caused by phonon drag, which is not included in the 316

present study. Test calculations considering thermal expansion 317

(larger lattice constant) yield larger S, suggesting that the 318

agreement can be improved further. In Au, the VA predicted 319

005100-5
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FIG. 4. Electrical resistivity as a function of temperature for Li, Na, K, Cu, Ag, Au, and Pt, compared with experimental data [46–49]. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.

S agrees with experiments for temperature below ∼500 K and320

overestimates for higher temperatures. Interestingly, a clear321

saturation of S at high temperature can be noticed in the mea-322

sured data, which is different from the other studied metals.323

A possible explanation is that the ‘kink’ in the electronic324

structure above ϵF in Au is closer than for Cu or Ag, and325

more accurate GW calculations predict that this ‘kink’ should326

be even closer [34], which may contribute to the saturation.327

Including SOC yields a slightly bent curve, with higher values328

at low temperature and lower for high temperatures, compared329

with the result without SOC. The shape of the T dependence330

with SOC has a better agreement with experiment.331

For Pt, the measured data are scattered at low temperature,332

with S < 0 in Ref. [58] (LB [56Ru]) but S > 0 below ∼200 K333

in Refs. [57,62] (LB [73Co] and [56Cu]). The small positive334

“hump” again arises due to the phonon drag effect. Ignoring335

the phonon drag peak, our VA predicted S is always negative336

and agrees reasonably well with the experimental data. Likely337

due to the complex Fermi surface, S in Pt has a normal sign,338

while CRTA wrongly predicts a positive S. The several sheets339

allow many interband (s-d) scatterings involving phonons,340

which will have very different relaxation times, again un-341

derscoring effects beyond the pure electronic dispersion. The342

SOC calculations improve the resistivity with respect to exper- 343

iment but overestimate the Seebeck coefficient—clearly we 344

are pushing the boundaries in accuracy of semilocal DFT band 345

structures with perturbative SOC (in the pseudopotential) and 346

neglecting changes of the band energies with temperature. 347

IV. CONCLUSIONS 348

In summary, we have calculated the electrical resistivity 349

and Seebeck coefficients entirely from a first-principles vari- 350

ational formalism, for selected alkali (Li, Na, and K) and 351

noble metals (Cu, Ag, Au, and Pt), combining electron phonon 352

scatterings, electron band structures, density of states, Fermi 353

surfaces, and phonon dispersion curves. Among these, Li, 354

Cu, Ag, and Au have abnormal positive Seebeck coefficients. 355

The theoretical predictions are compared with experimental 356

data, and quantitative agreement is achieved with only a few 357

exceptions, viz. the underestimation of resistivity for K and 358

Na, understood as a signature of the approaching melting 359

transition. The constant relaxation time approximation is also 360

used to compute the Seebeck coefficients, but it fails to predict 361

the correct sign for Li, Cu, Ag, and Au with positive S and for 362

Pt with negative S. CRTA also significantly underestimates the 363

005100-6
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FIG. 5. Seebeck coefficient as a function of temperature for Li, Na, K, Cu, Ag, Au, and Pt, compared with experimental data [50– 62]. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.

magnitude of S for Na and K. We have demonstrated that the364

variational approach has remarkable accuracy in predicting365

the transport properties of metals. This includes those with366

an abnormal sign for the Seebeck effect and complex Fermi367

surfaces involving d electrons and even for metals with very368

low S which are numerically challenging. The addition of spin369

orbit coupling does not seem to improve simultaneously ρ370

and S for Au and Pt. The SOC effect is probably of the same371

order of magnitude as other corrections such as anharmonicity372

and thermal expansion (related to the exceptional ductility of373

Au) and intrinsic exchange correlation errors in the DFT. The374

case of Au in particular, with high temperature saturation of375

S, warrants further study with even more accurate levels of376

theory.377
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APPENDIX A: AB INITIO SEEBECK COEFFICIENT 397

1. Computational details 398

We explicitly treat 1 valence electrons for Li (2s1), Na 399

(3s1), and K (4s1); 11 valence electrons for Cu (3d104s1), Ag 400

(4d104s1), and Au (5d106s1); and 10 valence electrons for Pt 401

(5d96s1). The lattice constants were fully relaxed (stresses 402

below 0.01 GPa) yielding the lattice constants given in 403

the main text. To check the “purely electronic” SOC effect, the 404

same lattice constants are used, relaxed without SOC. The 405
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FIG. 7. Example Fermi surface with a “normal” phonon process
which produces a negative (resistive) current contribution (along x)
and an Umklapp process which does not backscatter the charge
current (remains positive along x) but only deflects it.

optical one, with much lower group velocity, often negative,530

at the edge of the 1BZ. Again there is a reduction or even531

inversion in the thermal current contribution (resistive).532

A similar qualitative reasoning is often applied for elastic 533

scattering of electrons in an isotropic parabolic band, by De- 534

bye phonons, but suffers from the same limitations. vg(k) = 535

1
h̄∇kϵk = h̄2

m∗ k and all electrons stay at the Fermi level ϵF . 536

Even in this model, for realistic electron phonon coupling, 537

there is resistivity associated both to N and U processes (see, 538

e.g., Ziman [65] chapter IX), as the charge current will always 539

be changed by the scattering. Intuition would still hold that it 540

is changed more by U processes. However, any nonparabolic 541

dispersion destroys the link between vg(k) and k, and for 542

“gnarly” Fermi surfaces the velocity can be arbitrarily ori- 543

ented with respect to k: vg and k can be orthogonal and 544

even antiparallel for a nonspherical Fermi surface (cartoon 545

Fig. 7). Thus a “normal” can generate not just a reduction but 546

a negative contribution to the current, and a resistive Umklapp 547
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FIG. 7. Example Fermi surface with a “normal” phonon process
which produces a negative (resistive) current contribution (along x)
and an Umklapp process which does not backscatter the charge
current (remains positive along x) but only deflects it.

optical one, with much lower group velocity, often negative,
at the edge of the 1BZ. Again there is a reduction or even
inversion in the thermal current contribution (resistive).

A similar qualitative reasoning is often applied for elastic
scattering of electrons in an isotropic parabolic band, by De-
bye phonons, but suffers from the same limitations. vg(k) =
1
h̄∇kϵk = h̄2

m∗ k and all electrons stay at the Fermi level ϵF .
Even in this model, for realistic electron phonon coupling,
there is resistivity associated both to N and U processes (see,
e.g., Ziman [65] chapter IX), as the charge current will always
be changed by the scattering. Intuition would still hold that it
is changed more by U processes. However, any nonparabolic
dispersion destroys the link between vg(k) and k, and for
“gnarly” Fermi surfaces the velocity can be arbitrarily ori-
ented with respect to k: vg and k can be orthogonal and
even antiparallel for a nonspherical Fermi surface (cartoon
Fig. 7). Thus a “normal” can generate not just a reduction but
a negative contribution to the current, and a resistive Umklapp
transition can preserve a positive current contribution.

APPENDIX B: PHONON DISPERSION

As an essential ingredient of the electron-phonon coupling,
DFPT calculated phonon dispersion curves of the alkali and

FIG. 8. DFPT calculated phonon dispersion curves, compared with experimental data [67– 73], for Li, Na, K, Cu, Ag, Au, and Pt. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.
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impossible. To measure G/h-BN with transferred graphene, we
employ ARPES with nanometric lateral resolution (Nano-
ARPES11−13). From the ARPES E-k spectra, we observe
directly renormalization of the graphene Dirac cone where it is
close to the h-BN band, probably due to the orbital
hybridization between graphene and h-BN, suggesting that
orbital character plays a role in shaping the interlayer
interaction.14 More importantly, dispersive replicas of h-BN
valence band maxima (VBM) are distinguished at the hexagonal
Brillouin zone corner. We attribute these replica bands to the
formation of Fröhlich polaron, a composite quasiparticle
created in this heterostructure by the coupling of phonons
and valence electrons. In particular, we suggest that the
characteristic optical zone-center phonons of ∼210 meV15,16

are involved. To extract physical parameters from this polaronic
interaction, we calculate the spectral function with Thomas−
Fermi screened coupling using Migdal−Eliashberg theory,17

concluding a rather forward scattering with a characteristic
distance of 7 unit cells. The emergence of the Fröhlich polaron
in G/h-BN suggests a practical way to create new composite
quasiparticles by atomic layer stacking. Controlling the stacking
alignment angle18 or interlayer coupling strength19 can
potentially tune the properties of the quasiparticle. The
potential influences on polaron-related physics are also
discussed.
NanoARPES principle, sample preparation, and character-

ization are detailed in Supplementary Note 1. Figure 1a,b
describes the typical NanoARPES setup and sample lattice
structure, respectively. The overall photoemission spectra,
probed with a beam spot larger than the size of the G/h-BN
domain, show sharp core level peaks of carbon 1s, boron 1s,
and silicon 2p orbitals, suggesting the absence of hydrocarbon
contamination (Figure 1c and Supplementary Note 1). The
crystallographic alignment angle of graphene with respect to h-
BN is defined as ϕ ∼ 3° as discussed in Supplementary Note 2.
Figure 1d shows the real space map of photoemission intensity
(NanoARPES image) around the G/h-BN domain. It was
collected by integrating the photoemission signal close to the
Fermi level while scanning the sample along two in-plane
directions with a focused nanometric beam. This NanoARPES
image of the sample matches its optical image with clear
contrast (Figure 1e), demonstrating the capability of our

instrument to identify the sample location of both G/h-BN and
h-BN samples precisely with the required lateral resolution and
the stability of the whole setup at the submicrometric scale.
Taking advantage of the nanometric sample positioning,

Fermi surface and valence band structure of G/h-BN and
pristine h-BN are collected, as shown in Figure 2. Although the
G/h-BN electronic structure can be naively treated as the
superposition of pristine graphene and h-BN valence bands, we
observe deviations due to the heterostructure interactions. On
the one hand, G/h-BN shares similar h-BN σ- and π-bands with
pristine h-BN. This is reflected in the general consistency of
πh‑BN and σh‑BN between pristine h-BN and G/h-BN (see the
comparison in Figure 2b,c), even with ∼3° mismatch. Note that
because of the insulating nature of the pristine h-BN, its
binding energy is calibrated according to our previous work.20

For G/h-BN, electronic states close to the Fermi level are
dominated by the monocrystalline graphene π-band, whose
Fermi surface consists of only one main set of Dirac points at
the Brillouin zone corners. On the other hand, the G/h-BN
moire ́ superlattice, formed due to the lattice mismatch and
rotation, imposes periodic potential on graphene and results in
Dirac cone replicas (Figure 2e). This observation is consistent
with previous works by atomic force microscopy (AFM) and
scanning tunneling microscopy (STM).3−5,10,21 Analyzed in
detail in Supplementary Note 2, graphene is rotated ∼3°
respect to h-BN and shows no gap opening in the secondary
mini Dirac cones.7 Furthermore, the graphene Dirac cone and
h-BN valence band show signatures of renormalization in the
region highlighted in Figure 2d by the white dashed ellipse,
suggesting orbital hybridization between graphene and h-BN.
Similar hybridization features have also been observed in
graphene/MoS2 heterostructure.

14 It is believed that only bands
with out-of-plane orbital character are responsible for interlayer
interaction and modification of the electronic structure. Our
findings support this, pointing out the possibility of controlling
van der Waals interaction by choosing appropriate materials
with different orbital character and twisted angles between
them.
We move forward to analyze in detail the h-BN side in order

to examine the exotic phenomena induced by van der Waals
interaction. As shown in Figure 3a,b, the VBM of pristine h-BN
and G/h-BN display significant differences around the K point.

Figure 3. Detailed analysis of Fröhlich polaron spectra of G/h-BN. (a) Valence bands of pristine h-BN along Γ-K direction of h-BN. (b) Valence
bands of G/h-BN. Blue dashed lines represent the energy-distribution-curve (EDC)-fitted dispersions. Note that only the Γ-K side is fitted and the
K-M side is filled using mirror-plane symmetry. Solid box indicates the region where spectrum in panel c is from. (c) Zoom in EDC second derivative
band structure of G/h-BN. (d) Comparison of VBM spectra from pristine h-BN and graphene covered h-BN. Spectra are shifted in energy to be in
line with each other. (e) Poisson fitting to the EDC from the K point of G/h-BN.
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impossible. To measure G/h-BN with transferred graphene, we
employ ARPES with nanometric lateral resolution (Nano-
ARPES11−13). From the ARPES E-k spectra, we observe
directly renormalization of the graphene Dirac cone where it is
close to the h-BN band, probably due to the orbital
hybridization between graphene and h-BN, suggesting that
orbital character plays a role in shaping the interlayer
interaction.14 More importantly, dispersive replicas of h-BN
valence band maxima (VBM) are distinguished at the hexagonal
Brillouin zone corner. We attribute these replica bands to the
formation of Fröhlich polaron, a composite quasiparticle
created in this heterostructure by the coupling of phonons
and valence electrons. In particular, we suggest that the
characteristic optical zone-center phonons of ∼210 meV15,16

are involved. To extract physical parameters from this polaronic
interaction, we calculate the spectral function with Thomas−
Fermi screened coupling using Migdal−Eliashberg theory,17

concluding a rather forward scattering with a characteristic
distance of 7 unit cells. The emergence of the Fröhlich polaron
in G/h-BN suggests a practical way to create new composite
quasiparticles by atomic layer stacking. Controlling the stacking
alignment angle18 or interlayer coupling strength19 can
potentially tune the properties of the quasiparticle. The
potential influences on polaron-related physics are also
discussed.
NanoARPES principle, sample preparation, and character-

ization are detailed in Supplementary Note 1. Figure 1a,b
describes the typical NanoARPES setup and sample lattice
structure, respectively. The overall photoemission spectra,
probed with a beam spot larger than the size of the G/h-BN
domain, show sharp core level peaks of carbon 1s, boron 1s,
and silicon 2p orbitals, suggesting the absence of hydrocarbon
contamination (Figure 1c and Supplementary Note 1). The
crystallographic alignment angle of graphene with respect to h-
BN is defined as ϕ ∼ 3° as discussed in Supplementary Note 2.
Figure 1d shows the real space map of photoemission intensity
(NanoARPES image) around the G/h-BN domain. It was
collected by integrating the photoemission signal close to the
Fermi level while scanning the sample along two in-plane
directions with a focused nanometric beam. This NanoARPES
image of the sample matches its optical image with clear
contrast (Figure 1e), demonstrating the capability of our

instrument to identify the sample location of both G/h-BN and
h-BN samples precisely with the required lateral resolution and
the stability of the whole setup at the submicrometric scale.
Taking advantage of the nanometric sample positioning,

Fermi surface and valence band structure of G/h-BN and
pristine h-BN are collected, as shown in Figure 2. Although the
G/h-BN electronic structure can be naively treated as the
superposition of pristine graphene and h-BN valence bands, we
observe deviations due to the heterostructure interactions. On
the one hand, G/h-BN shares similar h-BN σ- and π-bands with
pristine h-BN. This is reflected in the general consistency of
πh‑BN and σh‑BN between pristine h-BN and G/h-BN (see the
comparison in Figure 2b,c), even with ∼3° mismatch. Note that
because of the insulating nature of the pristine h-BN, its
binding energy is calibrated according to our previous work.20

For G/h-BN, electronic states close to the Fermi level are
dominated by the monocrystalline graphene π-band, whose
Fermi surface consists of only one main set of Dirac points at
the Brillouin zone corners. On the other hand, the G/h-BN
moire ́ superlattice, formed due to the lattice mismatch and
rotation, imposes periodic potential on graphene and results in
Dirac cone replicas (Figure 2e). This observation is consistent
with previous works by atomic force microscopy (AFM) and
scanning tunneling microscopy (STM).3−5,10,21 Analyzed in
detail in Supplementary Note 2, graphene is rotated ∼3°
respect to h-BN and shows no gap opening in the secondary
mini Dirac cones.7 Furthermore, the graphene Dirac cone and
h-BN valence band show signatures of renormalization in the
region highlighted in Figure 2d by the white dashed ellipse,
suggesting orbital hybridization between graphene and h-BN.
Similar hybridization features have also been observed in
graphene/MoS2 heterostructure.

14 It is believed that only bands
with out-of-plane orbital character are responsible for interlayer
interaction and modification of the electronic structure. Our
findings support this, pointing out the possibility of controlling
van der Waals interaction by choosing appropriate materials
with different orbital character and twisted angles between
them.
We move forward to analyze in detail the h-BN side in order

to examine the exotic phenomena induced by van der Waals
interaction. As shown in Figure 3a,b, the VBM of pristine h-BN
and G/h-BN display significant differences around the K point.

Figure 3. Detailed analysis of Fröhlich polaron spectra of G/h-BN. (a) Valence bands of pristine h-BN along Γ-K direction of h-BN. (b) Valence
bands of G/h-BN. Blue dashed lines represent the energy-distribution-curve (EDC)-fitted dispersions. Note that only the Γ-K side is fitted and the
K-M side is filled using mirror-plane symmetry. Solid box indicates the region where spectrum in panel c is from. (c) Zoom in EDC second derivative
band structure of G/h-BN. (d) Comparison of VBM spectra from pristine h-BN and graphene covered h-BN. Spectra are shifted in energy to be in
line with each other. (e) Poisson fitting to the EDC from the K point of G/h-BN.
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Polaron overview
What is a polaron anyway?
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experimental FS maps for CCMO2 and CCMO4 in Fig. 2a, b,
respectively, shows clear increase of VL and thus electron density
with doping for both 3D spheres and q2D cylinders. This is
particularly clear for the cuts of the 3D spheres around the Γi,j
points which develop from small filled circles to larger open ones.
We note that n3D increases much more with doping than nq2D.

Weakly coupled electrons in 3D bands. We will now analyse the
experimental band dispersions E(k) and spectral functions A(k,
ω), and demonstrate that the 3D and q2D bands provide charge
carriers having totally different nature. First, we focus on the
former derived from the 3z2− r2 eg-orbitals. Their kx-dispersions
along the ΓX-direction of the bulk BZ marked in Fig. 2a, b (cut
“A”) are visualized by the ARPES intensity images for the
CCMO2 (d) and CCMO4 (f) samples (for band structure data
through an extended k-space region see Supplementary Figs. 4,
5). The ARPES dispersions confirm the picture of doping-
dependent band filling. They are shown overlaid with the DFT-
calculated bands slightly shifted to match the experimental kF,
assuming deviations from the nominal doping of at most 25%33.

Perovskite oxides are systems where a coupling of the
electrons with various bosonic excitations such as plasmons34
or phonons35,36 is expected, further translating in band

renormalization and modifications of the electron effective
mass m* and mobility. In search of bosonic coupling signatures,
we evaluated maxima of the ARPES energy-distribution curves
(EDCs), shown in Fig. 3a, b as filled circles. The raw data are
presented in Supplementary Fig. 6 and data-processing details
are in Supplementary Note 2. For CCMO2, these points follow
a parabolic E(k) with m* ~0.35m0 (m0 is the free-electron mass)
in agreement with the DFT predictions. With the increase of
occupied bandwidth in CCMO4, the experimental points start
deviating from the parabolic dispersion at EB’= 80 ± 20 meV
while approaching EF, and below this energy the experimental
dispersion follows the same m* ~ 0.35m0. The parabolic fit of
the region above EB’ is the green line in Fig. 3b. Such a
dispersion discontinuity, or a kink, is a standard signature of
weak electron-boson coupling. However, its quantitative
analysis in terms of coupling strength suffers from the
experimental statistics and possible admixture of the x2− y2
eg band. Similar behavior in the CCMO2 data may be hidden
behind smaller occupied bandwidth. The same feature is also
identified based on the analysis of momentum-distribution
curves (MDCs) in Supplementary Fig. 7.

Which are the bosonic excitations which could manifest as the
dispersion kink? One can rule out magnons because these
excitations in the parent AFM-ordered CMO strongly couple to

Table 1 Electron density for the three dimensional and quasi-two dimensional bands deduced from angle resolved phtoelectron
spectroscopy data.

3D-electrons q2D-electrons

kF (Å−1) n3D (cm−3) kF (Å−1) nq2D (cm−3)

2% Ce-doped CCMO2 0.10 ± 0.02 (0.35 ± 0.06) × 1020 0.13 ± 0.02 (1.20 ± 0.06) × 1021

4% Ce-doped CCMO4 0.20 ± 0.02 (2.80 ± 0.06) × 1020 0.15 ± 0.02 (1.60 ± 0.06) × 1021

Fig. 3 Bandstructure of CaCeMnO3. a–d Band dispersions E(k) measured at the Mn 2p resonance for a, c 2% Ce-doped CCMO2 and b, d 4% Ce-doped
CCMO4. E(k) of the 3D bands around the Γ-point (a, b) identifies light electron charge carriers. Blue arrow indicates the threshold energy of energy
distribution curves (EDC) maxima deviating in CCMO4 from the parabolic dispersion. Angle resolved photoelectron spectroscopy (ARPES) images of the
quasi-2D bands around ky= 0.5π/a (c, d) show massive humps extending down in binding energy (EB) which manifest heavy polaronic charge carriers.
Also shown through (a–d) are the overlaid density functional theory (DFT)-theoretical bands and gradients of the energy-integrated ARPES intensity,
identifying the Fermi wavevector kF.; e, f Spectral function A(k,ω) ∝ EDC at kx= kF for the 3D bands (thin lines) and at ky= 0.5π/a for the q2D ones (thick
lines) for CCMO2 (e) and CCMO4 (f). For the q2D bands, the whole A(k,ω) is dominated by the polaronic hump.
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impossible. To measure G/h-BN with transferred graphene, we
employ ARPES with nanometric lateral resolution (Nano-
ARPES11−13). From the ARPES E-k spectra, we observe
directly renormalization of the graphene Dirac cone where it is
close to the h-BN band, probably due to the orbital
hybridization between graphene and h-BN, suggesting that
orbital character plays a role in shaping the interlayer
interaction.14 More importantly, dispersive replicas of h-BN
valence band maxima (VBM) are distinguished at the hexagonal
Brillouin zone corner. We attribute these replica bands to the
formation of Fröhlich polaron, a composite quasiparticle
created in this heterostructure by the coupling of phonons
and valence electrons. In particular, we suggest that the
characteristic optical zone-center phonons of ∼210 meV15,16

are involved. To extract physical parameters from this polaronic
interaction, we calculate the spectral function with Thomas−
Fermi screened coupling using Migdal−Eliashberg theory,17

concluding a rather forward scattering with a characteristic
distance of 7 unit cells. The emergence of the Fröhlich polaron
in G/h-BN suggests a practical way to create new composite
quasiparticles by atomic layer stacking. Controlling the stacking
alignment angle18 or interlayer coupling strength19 can
potentially tune the properties of the quasiparticle. The
potential influences on polaron-related physics are also
discussed.
NanoARPES principle, sample preparation, and character-

ization are detailed in Supplementary Note 1. Figure 1a,b
describes the typical NanoARPES setup and sample lattice
structure, respectively. The overall photoemission spectra,
probed with a beam spot larger than the size of the G/h-BN
domain, show sharp core level peaks of carbon 1s, boron 1s,
and silicon 2p orbitals, suggesting the absence of hydrocarbon
contamination (Figure 1c and Supplementary Note 1). The
crystallographic alignment angle of graphene with respect to h-
BN is defined as ϕ ∼ 3° as discussed in Supplementary Note 2.
Figure 1d shows the real space map of photoemission intensity
(NanoARPES image) around the G/h-BN domain. It was
collected by integrating the photoemission signal close to the
Fermi level while scanning the sample along two in-plane
directions with a focused nanometric beam. This NanoARPES
image of the sample matches its optical image with clear
contrast (Figure 1e), demonstrating the capability of our

instrument to identify the sample location of both G/h-BN and
h-BN samples precisely with the required lateral resolution and
the stability of the whole setup at the submicrometric scale.
Taking advantage of the nanometric sample positioning,

Fermi surface and valence band structure of G/h-BN and
pristine h-BN are collected, as shown in Figure 2. Although the
G/h-BN electronic structure can be naively treated as the
superposition of pristine graphene and h-BN valence bands, we
observe deviations due to the heterostructure interactions. On
the one hand, G/h-BN shares similar h-BN σ- and π-bands with
pristine h-BN. This is reflected in the general consistency of
πh‑BN and σh‑BN between pristine h-BN and G/h-BN (see the
comparison in Figure 2b,c), even with ∼3° mismatch. Note that
because of the insulating nature of the pristine h-BN, its
binding energy is calibrated according to our previous work.20

For G/h-BN, electronic states close to the Fermi level are
dominated by the monocrystalline graphene π-band, whose
Fermi surface consists of only one main set of Dirac points at
the Brillouin zone corners. On the other hand, the G/h-BN
moire ́ superlattice, formed due to the lattice mismatch and
rotation, imposes periodic potential on graphene and results in
Dirac cone replicas (Figure 2e). This observation is consistent
with previous works by atomic force microscopy (AFM) and
scanning tunneling microscopy (STM).3−5,10,21 Analyzed in
detail in Supplementary Note 2, graphene is rotated ∼3°
respect to h-BN and shows no gap opening in the secondary
mini Dirac cones.7 Furthermore, the graphene Dirac cone and
h-BN valence band show signatures of renormalization in the
region highlighted in Figure 2d by the white dashed ellipse,
suggesting orbital hybridization between graphene and h-BN.
Similar hybridization features have also been observed in
graphene/MoS2 heterostructure.

14 It is believed that only bands
with out-of-plane orbital character are responsible for interlayer
interaction and modification of the electronic structure. Our
findings support this, pointing out the possibility of controlling
van der Waals interaction by choosing appropriate materials
with different orbital character and twisted angles between
them.
We move forward to analyze in detail the h-BN side in order

to examine the exotic phenomena induced by van der Waals
interaction. As shown in Figure 3a,b, the VBM of pristine h-BN
and G/h-BN display significant differences around the K point.

Figure 3. Detailed analysis of Fröhlich polaron spectra of G/h-BN. (a) Valence bands of pristine h-BN along Γ-K direction of h-BN. (b) Valence
bands of G/h-BN. Blue dashed lines represent the energy-distribution-curve (EDC)-fitted dispersions. Note that only the Γ-K side is fitted and the
K-M side is filled using mirror-plane symmetry. Solid box indicates the region where spectrum in panel c is from. (c) Zoom in EDC second derivative
band structure of G/h-BN. (d) Comparison of VBM spectra from pristine h-BN and graphene covered h-BN. Spectra are shifted in energy to be in
line with each other. (e) Poisson fitting to the EDC from the K point of G/h-BN.
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• How common are different types?
 • How far can we get with simple models?

Signatures in optics, transport, superconductivity…

See previous lecture on polarons and ARPES by Carla Verdi!



Fröhlich model
1 electron 1 polar phonon

Long range electrostatic coupling


Single free parameter � 


Binding energy �  

aka Zero Point Renormalization (ZPR)


Perturbation theory catastrophe at � =6

α
EP ≃ − αωLO

α

!10

α = ( 1
ε∞

−
1
ε0 ) m*

2ωLO

1
ε*

=
1

ε∞
−

1
ε0

gFr(q) =
i
q ( 2πωLO

ε*VBvK )
1
2

gFr(q) =
i
q ( 2πωLO

ϵ*VBvK )
1
2

=
i
q ( 2 2π

VBvK

ω3/2
LO

m*
α)

1
2

q

ωLO

Fröhlich Adv. Phys. (1954)

Mishchenko PRB (2000)

Story PRB (2014) 
Sjakste PRB (2015)

Verdi PRL (2015)

m*P
m*

≈ (1 −
α
6 )

−1

α =
1
ε*

m*
2ωLO



Methods
Descriptors: m* ε∞ ε0 ω0   


Materials Project databases:


• Intersection of  > 1039 materials:


• 9000 m* : F. Ricci Sci Data (2017)


• 1500 phonons: G. Petretto Sci Data (2018)


Criteria:


• ICSD stable 3D, nonmagnetic, insulators


• 2-5 elements per unit cell


Conduction band minimum (also valence)
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Distribution of alpha and ZPR
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Electron effects
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Phonon effects
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Beyond Fröhlich - Generalization
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Degenerate bands


All phonon modes


Directional m*


Directional variation of �ε and ω

αj = ∫ d ̂q
⟨(m*n ( ̂q))1/2⟩n

ϵ*j ( ̂q) 2ωj( ̂q)

1
ϵ*j ( ̂q)

=
4π
Ω0 (

̂q ⋅ pj( ̂q)
ϵ∞( ̂q)ω0( ̂q) )

2

A. Miglio npj Comp Mater (2020)

Why does Frohlich work so well?
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Cs2NaScF6

KN3  

How far off are the Fröhlich models?


Which modes contribute?


Calculate ZPR with AHC theory


DFPT Phonons, m* 


Nery PRB (2018)

Beyond Fröhlich - validation

Cs2NaScF6 : large ZPR large alpha

KN3 : large ZPR small alpha
ZP

R
 (m

eV
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Beyond Fröhlich - validation
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ΣFan
knj (ω) =

1
Nq

BZ

∑
q

∑
n′�

⟨k + qn′� H(1)
q j kn⟩

2

× [
1 − fk+qn′ �

ω−εk+qn′� − ωq j+iη
+

fk+qn′ �

ω−εk+qn′� + ωq j+iη ]
KN3  Cs2NaScF6

 sFr(DB)     sFr(Abinit)  gFr(DB)   AHC

   -542          -330          -153      -245

sFr(DB)  sFr(Abinit)  gFr(DB)   AHC 

-1351        -1241       -1089    -966



Polaron takeaway
High throughput Fröhlich


• Clustering by element period/ionicity


• Monotonic electron contribution


• Competing constraints in � 


• Valid predictor for order of magnitude

ε0 ωLO ε∞ m *

!18

Comparison with full DFPT + AHC theory:


• Many phonons intervene


• Highest LO does not dominate


• Fröhlich ZPR 30-50% overestimation
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impossible. To measure G/h-BN with transferred graphene, we
employ ARPES with nanometric lateral resolution (Nano-
ARPES11−13). From the ARPES E-k spectra, we observe
directly renormalization of the graphene Dirac cone where it is
close to the h-BN band, probably due to the orbital
hybridization between graphene and h-BN, suggesting that
orbital character plays a role in shaping the interlayer
interaction.14 More importantly, dispersive replicas of h-BN
valence band maxima (VBM) are distinguished at the hexagonal
Brillouin zone corner. We attribute these replica bands to the
formation of Fröhlich polaron, a composite quasiparticle
created in this heterostructure by the coupling of phonons
and valence electrons. In particular, we suggest that the
characteristic optical zone-center phonons of ∼210 meV15,16

are involved. To extract physical parameters from this polaronic
interaction, we calculate the spectral function with Thomas−
Fermi screened coupling using Migdal−Eliashberg theory,17

concluding a rather forward scattering with a characteristic
distance of 7 unit cells. The emergence of the Fröhlich polaron
in G/h-BN suggests a practical way to create new composite
quasiparticles by atomic layer stacking. Controlling the stacking
alignment angle18 or interlayer coupling strength19 can
potentially tune the properties of the quasiparticle. The
potential influences on polaron-related physics are also
discussed.
NanoARPES principle, sample preparation, and character-

ization are detailed in Supplementary Note 1. Figure 1a,b
describes the typical NanoARPES setup and sample lattice
structure, respectively. The overall photoemission spectra,
probed with a beam spot larger than the size of the G/h-BN
domain, show sharp core level peaks of carbon 1s, boron 1s,
and silicon 2p orbitals, suggesting the absence of hydrocarbon
contamination (Figure 1c and Supplementary Note 1). The
crystallographic alignment angle of graphene with respect to h-
BN is defined as ϕ ∼ 3° as discussed in Supplementary Note 2.
Figure 1d shows the real space map of photoemission intensity
(NanoARPES image) around the G/h-BN domain. It was
collected by integrating the photoemission signal close to the
Fermi level while scanning the sample along two in-plane
directions with a focused nanometric beam. This NanoARPES
image of the sample matches its optical image with clear
contrast (Figure 1e), demonstrating the capability of our

instrument to identify the sample location of both G/h-BN and
h-BN samples precisely with the required lateral resolution and
the stability of the whole setup at the submicrometric scale.
Taking advantage of the nanometric sample positioning,

Fermi surface and valence band structure of G/h-BN and
pristine h-BN are collected, as shown in Figure 2. Although the
G/h-BN electronic structure can be naively treated as the
superposition of pristine graphene and h-BN valence bands, we
observe deviations due to the heterostructure interactions. On
the one hand, G/h-BN shares similar h-BN σ- and π-bands with
pristine h-BN. This is reflected in the general consistency of
πh‑BN and σh‑BN between pristine h-BN and G/h-BN (see the
comparison in Figure 2b,c), even with ∼3° mismatch. Note that
because of the insulating nature of the pristine h-BN, its
binding energy is calibrated according to our previous work.20

For G/h-BN, electronic states close to the Fermi level are
dominated by the monocrystalline graphene π-band, whose
Fermi surface consists of only one main set of Dirac points at
the Brillouin zone corners. On the other hand, the G/h-BN
moire ́ superlattice, formed due to the lattice mismatch and
rotation, imposes periodic potential on graphene and results in
Dirac cone replicas (Figure 2e). This observation is consistent
with previous works by atomic force microscopy (AFM) and
scanning tunneling microscopy (STM).3−5,10,21 Analyzed in
detail in Supplementary Note 2, graphene is rotated ∼3°
respect to h-BN and shows no gap opening in the secondary
mini Dirac cones.7 Furthermore, the graphene Dirac cone and
h-BN valence band show signatures of renormalization in the
region highlighted in Figure 2d by the white dashed ellipse,
suggesting orbital hybridization between graphene and h-BN.
Similar hybridization features have also been observed in
graphene/MoS2 heterostructure.

14 It is believed that only bands
with out-of-plane orbital character are responsible for interlayer
interaction and modification of the electronic structure. Our
findings support this, pointing out the possibility of controlling
van der Waals interaction by choosing appropriate materials
with different orbital character and twisted angles between
them.
We move forward to analyze in detail the h-BN side in order

to examine the exotic phenomena induced by van der Waals
interaction. As shown in Figure 3a,b, the VBM of pristine h-BN
and G/h-BN display significant differences around the K point.

Figure 3. Detailed analysis of Fröhlich polaron spectra of G/h-BN. (a) Valence bands of pristine h-BN along Γ-K direction of h-BN. (b) Valence
bands of G/h-BN. Blue dashed lines represent the energy-distribution-curve (EDC)-fitted dispersions. Note that only the Γ-K side is fitted and the
K-M side is filled using mirror-plane symmetry. Solid box indicates the region where spectrum in panel c is from. (c) Zoom in EDC second derivative
band structure of G/h-BN. (d) Comparison of VBM spectra from pristine h-BN and graphene covered h-BN. Spectra are shifted in energy to be in
line with each other. (e) Poisson fitting to the EDC from the K point of G/h-BN.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b04604
Nano Lett. 2018, 18, 1082−1087
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Goal: maximize electron mobility 
Also for opto- or spintronics 
Issues for 3D materials @ nanoscale:  

leakage, heat, fabrication, cost

What changes in 2D? 
+ low mass 
+ low operational voltage 
+ easy assembly 
+/- environment sensitive 
Find optimal material (combination) 2D graphene 

Chen IBM (2008)

3D Si FinFET 
Samsung (2020)

14 nm 



Filter the interesting candidates
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FIG. 3. Binding energies of the bulk 3D compounds identified as geometrically layered: a Binding energy for a selection of
layered materials identified in Ref. 46, comparing results from RPA (Ref. 46) and from the DF2-C09 and rVV10 functionals
(this work). b Normalised distribution of all binding energies computed in this work. c Binding energy vs relative discrepancy
in interlayer distance between the structure relaxed using the revPBE and the DF2-C09 functional. Materials classified as
easily exfoliable, potentially exfoliable, or with high binding energy are reported in di↵erent colours. Well-known 2D materials
are highlighted in the plot.

ergy against the interlayer-distance di↵erence for 1535
compounds that have been studied with the revPBE and
DF2-C09 functionals. We observe that most compounds
with low binding energy exhibit a large relative discrep-
ancy in interlayer distance calculated with the two func-
tionals, which is expected since the interlayer interac-
tion is very sensitive to vdW forces. This allows us to
identify which layered compounds are characterised by
vdW interactions between layers. We set the threshold

for these (shown in blue in Fig. 3c) at 30 meV · Å�2
for

binding energies computed with the DF2-C09 functional,

and 35 meV · Å�2
for those computed using rVV10. We

classify two-dimensional systems exfoliated from com-
pounds belonging to this group as “easily exfoliable”
(EE). As shown in Fig. 3c, this choice recovers 2D ma-
terials commonly exfoliated in experiments49, validating
the approach.

At the top left of Fig. 3c, a number of compounds ex-
hibit high binding energies and a similar interlayer dis-
tance when comparing the revPBE and vdW functionals;
many also contain substructures of mixed dimensionali-

ties, as discussed before. This group can be clearly sep-
arated from the rest, and is shown in yellow in Fig. 3c,

the boundary being set at 130 meV · Å�2
for both func-

tionals. Above this value, compounds are not considered
exfoliable and they are discarded from the database.
Between these two regions, compounds with interme-

diate binding energies (in green in Fig. 3c) exhibit a
relatively weak, possibly non-vdW, bonding. As an ex-
ample, the compound PdTe2 discussed above belongs to
this region, and is metallic out-of-plane. We classify two-
dimensional structures exfoliated from parents belonging
to this group as “potentially exfoliable” (PE).
Finally, materials for which the binding energy has

been computed with both vdW functionals are classified
according to the most optimistic prediction.

The 2D database

Using these criteria, and after removal of duplicates
(see Methods), we obtain 1053 easily exfoliable and 791
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Competitive with Silicon 
Good mobility only at high doping 
High mobility without doping?
Let’s look at GaSe

100 000 3D parents 
2000 easily exfoliable 
250 small unit cells 

12 mobility calculation
Mounet Nat. Nano 13 246 (2018) 

Sohier 2D Mater. 8 015025 (2020)
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Engineering GaSe
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→ New model for heterostructure response
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Real device will be encapsulated 

Coupling screened remotely with BN (a bit)

Idea: screen remotely with graphene / BN 

High mobility also at low doping

Sohier Gibertini Verstraete PRMater 5 024004 (2021)
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Coupled heterostructure equations 

χ(q, z, z′�) = Q(q)f(q, z − z0)f(q, z′� − z0)
+P(q)g(q, z − z0)g(q, z′� − z0)

δnk(q, z) = ∫ χk(q, z, z′�) Vext(q, z′�) + ∑
m≠k

vm
ind(q, z′�) dz′�

Const / linear perturbation:

Full pipeline: 

1) reference system EPC 

2) re-screen Fröhlich interaction in layer 

3) BTE mobility with full band structure

Sohier Gibertini Verstraete PRMater 5 024004 (2021)
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Sohier Physical Review X (2019) 
Sohier Melo Zanolli Verstraete in preparation

2D transport takeaway

Full stack dielectric model 

Any layers any doping 
Remote screening concept quantified

Screening with two valleys

εF

+δn−δn
Ongoing work 

other phonons: piezo, acoustic 

multi valley screening and transport
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2D dielectric engineering 

Full stack dielectric model 

Screen Frohlich w/ remote graphene 

Re-calculate EPC and transport

High throughput Fröhlich 
Clustering by element period/ionicity 

Competing constraints in !  

Valid predictor for order of magnitude 
Highest LO does not dominate
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